Quasipolynomial formulas for the Kronecker coefficients indexed by two two – row shapes ( extended abstract )
نویسنده
چکیده
We show that the Kronecker coefficients indexed by two two–row shapes are given by quadratic quasipolynomial formulas whose domains are the maximal cells of a fan. Simple calculations provide explicitly the quasipolynomial formulas and a description of the associated fan. These new formulas are obtained from analogous formulas for the corresponding reduced Kronecker coefficients and a formula recovering the Kronecker coefficients from the reduced Kronecker coefficients. As an application, we characterize all the Kronecker coefficients indexed by two two-row shapes that are equal to zero. This allowed us to disprove a conjecture of Mulmuley about the behavior of the stretching functions attached to the Kronecker coefficients. Résumé. Nous démontrons que les coefficients de Kronecker indexés par deux partitions de longueur au plus 2 sont donnés par des formules quasipolynomiales quadratiques dont les domaines de validité sont les cellules maximales d’un éventail. Des calculs simples nous donnent une description explicite des formules quasipolynomiales et de l’éventail associé. Ces nouvelles formulas sont obtenues de formules analogues pour les coefficients de Kronecker réduits correspondants et au moyen d’une formule reconstruisant les coefficients de Kronecker à partir des coefficients de Kronecker réduits. Une application est la caractérisation exacte de tous les coefficients de Kronecker non– nuls indexés par deux partitions de longueur au plus deux. Ceci nous a permis de réfuter une conjecture de Mulmuley au sujet des fonctions de dilatations associées aux coefficients de
منابع مشابه
The power of symmetric functions in noncommutative variables
We show that the Kronecker coefficients indexed by two two-row shapes are given by quadratic quasipolynomial formulas whose domains are the maximal cells of a fan. Simple calculations provide explicitly the quasipolynomial formulas and a description of the associated fan. As an application, we characterize all the Kronecker coefficients indexed by two two-row shapes that are equal to zero. Join...
متن کاملThe Kronecker Product of Schur Functions Indexed by Two-Row Shapes or Hook Shapes
The Kronecker product of two Schur functions sμ and sν , denoted by sμ ∗sν, is the Frobenius characteristic of the tensor product of the irreducible representations of the symmetric group corresponding to the partitions μ and ν. The coefficient of sλ in this product is denoted by γ λ μν , and corresponds to the multiplicity of the irreducible character χ in χχ . We use Sergeev’s Formula for a S...
متن کاملLecture 6 : Kronecker Product of Schur Functions – Part I
The irreducible representations of Sn, i.e. the Specht modules are indexed by partitions λ of n. For any two partitions λ, μ of n, Sλ ⊗ Sμ = gλμνSν , for suitable integers gλμν . The actual values of these coefficients still eludes us. We look at a formula (admittedly messy), which gives the exact values of gλμν for simple shapes λ, μ.
متن کاملA Combinatorial Interpretation for the Coefficients in the Kronecker Product s(n−p,p) ∗ sλ
In this paper we give a combinatorial interpretation for the coefficient of sν in the Kronecker product s(n−p,p) ∗ sλ, where λ = (λ1, . . . , λ`(λ)) ` n, if `(λ) ≥ 2p − 1 or λ1 ≥ 2p − 1; that is, if λ is not a partition inside the 2(p − 1) × 2(p − 1) square. For λ inside the square our combinatorial interpretation provides an upper bound for the coefficients. In general, we are able to combinat...
متن کاملMultiplicities in the Kronecker Product s (n−p,p) ∗ sλ
In this paper we give a combinatorial interpretation for the coefficient of sν in the Kronecker product s(n−p,p) ∗ sλ, where λ = (λ1, . . . , λl(λ)) ⊢ n, if l(λ) ≥ 2p − 1 or λ1 ≥ 2p − 1; that is, if λ is not a partition inside the 2(p − 1) × 2(p − 1) square. For λ inside the square our combinatorial interpretation provides an upper bound for the coefficients. In general, we are able to combinat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008